Granzyme B–Mediated Cytochrome C Release Is Regulated by the Bcl-2 Family Members Bid and Bax
نویسندگان
چکیده
Cytotoxic T lymphocytes (CTLs) destroy target cells through a mechanism involving the exocytosis of cytolytic granule components including granzyme B (grB) and perforin, which have been shown to induce apoptosis through caspase activation. However, grB has also been linked with caspase-independent disruption of mitochondrial function. We show here that cytochrome c release requires the direct proteolytic cleavage of Bid by grB to generate a 14-kD grB-truncated product (gtBid) that translocates to mitochondria. In turn, gtBid recruits Bax to mitochondria through a caspase-independent mechanism where it becomes integrated into the membrane and induces cytochrome c release. Our results provide evidence for a new pathway by which CTLs inflict damage and explain the caspase-independent mechanism of mitochondrial dysfunction.
منابع مشابه
Granzyme B-activated p53 interacts with Bcl-2 to promote cytotoxic lymphocyte-mediated apoptosis.
Granzyme B (GzmB) plays a major role in CTLs and NK cell-mediated elimination of virus-infected cells and tumors. Human GzmB preferentially induces target cell apoptosis by cleaving the proapoptotic Bcl-2 family member Bid, which, together with Bax, induces mitochondrial outer membrane permeabilization. We previously showed that GzmB also induces a rapid accumulation of the tumor-suppressor pro...
متن کاملProapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity.
Through direct interaction with the voltage-dependent anion channel (VDAC), proapoptotic Bcl-2 family members such as Bax and Bak induce apoptogenic mitochondrial cytochrome c release and membrane potential (Deltapsi) loss in isolated mitochondria. Using isolated mitochondria, we showed that Bid and Bik, BH3-only proteins from the Bcl-2 family, induced cytochrome c release but not Deltapsi loss...
متن کاملIntrinsic and extrinsic pathway signaling during neuronal apoptosis: Lessons from the analysis of mutant mice
rophic factor deprivation (TFD)-induced apoptosis in sympathetic neurons requires macromolecular synthesis–dependent BAX translocation, cytochrome c (cyt c ) release, and caspase activation. Here, we report the contributions of other intrinsic and extrinsic pathway signals to these processes. Sympathetic neurons expressed all antiapoptotic BCL-2 proteins examined, yet expressed only certain BH3...
متن کاملIntrinsic and extrinsic pathway signaling during neuronal apoptosis
Trophic factor deprivation (TFD)-induced apoptosis in sympathetic neurons requires macromolecular synthesis-dependent BAX translocation, cytochrome c (cyt c) release, and caspase activation. Here, we report the contributions of other intrinsic and extrinsic pathway signals to these processes. Sympathetic neurons expressed all antiapoptotic BCL-2 proteins examined, yet expressed only certain BH3...
متن کاملApoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2.
Proapoptotic members of the Bcl-2 family, including Bax, Bak, and Bid, directly trigger the mitochondrial release of apoptogenic cytochrome c and apoptosis-inducing factor into the cytoplasm. One of the crucial steps before Bax can exert its proapoptotic activity is translocation from the cytoplasm to the mitochondria, but the molecular mechanism of this translocation is not understood. To inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 192 شماره
صفحات -
تاریخ انتشار 2000